
J .  Fluid Mech. (1975), vol. 67, part 1 ,  p p .  197-202 

Printed in Great &&a& 
197 

On the effect of a small counterpressure 
on constant-power spherical detonation waves as 

driven by focused radiation 

By Y .  H. GEORGE 
Sibley School of Mechanical and Aerospace Engineering, Cornell University, 

Ithaca, New Yorkt 

(Received 11 February 1974) 

A small perturbation analysis is made of the flow inside a spherical explosion 
created in a gas absorbing energy from an array of lasers with a common focus. 
The influence of a small counterpressure outside the leading shock wave is investi- 
gated for power deposition constant in time. The departure from self-similarity is 
described by a power series in the variable y, the inverse square of a Mach number 
based on the wave-front velocity. To first order, the flow equations are solved 
numerically, the shock velocity is obtained and the radial profiles of velocity, 
density and pressure are presented graphically. The flow singularity at  the 
radiation focus is discussed. 

1. Introduction 
The flow within a constant-power detonation wave created by focusing laser 

radiation on a gaseous target has recently been analysed by George & Moore 
(1973). A perturbation approach using Fourier series in the angular co-ordinate 
was developed under the assumption of a narrow radiation absorption layer. 
Self-similarity resulted when the gas was considered to  be inviscid and not heat 
conducting and the pressure ahead of the wave front was neglected. An interesting 
result of that study was the appearance, in the first-order perturbation, of a 
strong singularity at the radiation focus. It was shown to correspond, in the 
fully nonlinear equations, to the existence of a ‘forbidden region’ into which the 
mathematical solution of the flow equations could not be carried. 

One purpose of this paper is partially to clarify the physical understanding of 
this situation. To that effect, the influence of a non-zero counterpressure ahead 
of the leading shock wave is investigat,ed in the case of a spherically symmetric 
arrangement and its bearing on the focal singularity is discussed. From another 
standpoint, certain experimental conditions are such that the static pressure 
ahead of the leading shock wave cannot be neglected in comparison with the 
dynamic pressure of the front. 

A small perturbation analysis is made using power series in a parameter y 
proportional to the counterpressure. First-order velocity, density and pressure 
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profiles are presented and the wave-front speed is obtained. Particular attention 
is paid to the behaviour of physical quantities in the neighbourhood of the 
radiation focus. 

2. Governing equations 

similarity variable is, for power constant in time, 
As in George & Moore (1973), r is the radius, t is time and the radial self- 

h = r/Atn with n = $, A = [zLp;l(y- 1)a]2, (1) 

where nL is the laser power, po the density of the undisturbed medium, y the ratio 
of specific heats and a is a constant to be obtained as part of the solution. 

Further, a non-dimensional time is introduced using the counterpressure po:  

y = p)op;1y(nAtn-1)-2. (2) 

y can be interpreted as the inverse square of a fictitious Mach number based on 
the sound speed ahead of the wave and wave-front speed pertaining to a self- 
similar spark (i.e. with zero counterpressure). This approach was found much 
easier to use than Sakurai’s (1954) since the unknown wave-front velocity, rather 
than appearing in the flow equations, only enters the boundary conditions. The 
radial velocity, density and pressure are non-dimensionalized as 

u, = nAtn-lV(h, y), p = poR(h, y), p = po(nAt”-1)2 P(h, y). (3)  

The inviscid isentropic flow equations are 

( V -  
RV 
h 

A )  R, + Rq + 2 - - n-1 
n 

2 - yR, = 0, 

n-1 PV n-1  
(V-A)  PA+ 2 - P +yPv,+ 27 h - 2 7 yP, = 0. 

n 

Boundary conditions are applied on a sphere 

rd = Atnm(y), ( 5 )  

where m(y) is an a priori unknown function to be found as part of the solution. 
For convenience, define 

n-  1 dm(y) 
f i(y) = m ( y ) - 2 -  y- 

n d?l 
The boundary conditions then are 

v, = ( 1 - f ) f i ( Y ) ,  R, = w, 
Pd = (1 -f) ?%(y)2 + y-1y 

with 
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3. Small perturbation analysis 
For small counterpressures y is a small parameter. The wave-front location 

and flow variables can be expanded in power series in y. Retaining only the first 
term, one obtains 

m(y) = 1 +A,!!, (8) 

where A, is an unknown constant, and 

v = V q n )  + yV(l)(h), R = R‘O’(h) + yR(l)(h), P = P‘O)(h) + yP(l)(h). (9) 

The zeroth-order differential equations and boundary conditions were solved 
by Champetier, Couairon & Vandenboomgaerde (1968), Wilson & Turcotte (1970) 
and George & Moore (1973). Detailed investigation of the flow equation near the 
origin revealed a linear velocity profile, finite pressure and zero density, hence 
infinite temperature. These features are somewhat similar to those of a regular 
constant-energy blast wave. 

The first-order flow equations are 

where a prime denotes d/dh. The boundary conditions are transferred to h = 1 
by a Taylor expansion: 

( 1 1 4  n 

where f@), K and K ,  are known constants defined as 

The system of linear differential equations (10) is numerically integrated out- 
wards from the origin to the boundary. For this purpose a local solution of the 
following form is sought in the neighbourhood of h = 0: 

(13) pel) As, Rfl) N hz+a-3 pa) N hz’for-1. 
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a results from the zeroth-order solution and is equal to 9 (for y = 9). Substitu- 
tion into (10) yields an indicia1 equation for x, the roots of which are 

The first root corresponds to an O(y) source of mass and energy at  the origin. The 
physics of the problem do not allow for such an effect so the contribution from x1 
must be set equal to zero. Further, George (1972) has shown that the correct local 
solution corresponding to x, and x3 is 

W ( A )  = B:A+B2,AS, ( 1 5 4  

R(l)(A) = B?jAE+AgAE, (15 b)  
P‘l’(A) = A; + A$A%, ( 1 5 4  

where Bi and B: are arbitrary constants and other A’s and B’s are related to the 
former two. 

The leading part of (15) is seen to have exactly the same behaviour as the local 
zeroth-order self-similar solution: the velocity is linear, the pressure tends to 
a constant and the density goes to zero like A E ,  hence the temperature blows up 
a t  the origin. In  connexion with George & Moore’s (1973) analysis of the forbidden 
domain around the focus of a non-spherical constant-power blast wave, it may be 
inferred that their physically unacceptable situation does not result from 
neglecting the counterpressure ahead of the wave front since in that case no 
singularity stronger than that in the zeroth-order solution appears. 

Starting with (15), differential equations (10) are numerically integrated 
outwards and linearity is used to determine the unknown position A, of the 
leading shock wave so as to satisfy boundary conditions (11). One obtains 

A2 = - 0.1993. (16) 

This indicates a weakening of the wave owing to counterpressure. The velocity, 
density and pressure perturbation profiles are plotted on figure 1 versus the non- 
dimensional radius A. The velocity decreases over the whole flow range whereas 
the density and pressure increase. Comparing the trend of this solution with 
Sakurai’s (1954) results for constant-energy blast waves, the profiles are markedly 
less steep near the boundary, as might be expected from the fact that no 
Newtonian layer of concentrated mass exists for constant-power waves when 
y+ 1. 

4. Concluding remarks 
Counterpressure, introduced in the form of a small perturbation, does not 

affect the nature of the singularity which exists a t  the origin of a spherical 
constant-power detonation wave. The locally infinite temperature still prevails 
and it is believed that this is the physical origin of the ‘forbidden region’ 
described by George & Moore (1973). 

The present analysis gives a more refined model than the purely self-similar 
solution, particularly in cases where the parameter y becomes significant, 
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FIGURE 1. Velocity, density and pressure perturbation profiles. 

i.e. when the sound speed in the undisturbed gas is not negligible compared with 
the wave-front speed. This was the case in an experiment by Ahmad & Key (1969) 
where the undisturbed gas was preheated by a primary laser detonation wave. 
Raizer (1968) also pointed out that the power needed to maintain a laser- 
supported detonation wave in air once breakdown has occurred is much smaller 
than the power necessary to initiate the breakdown. In  that case the wave-front 
Mach number is no longer much larger than unity. 

The technique developed could easily be applied to any power-law dependence 
on time of the laser power addition; the time exponent in the self-similar radial 
variable should then be changed. This would permit better approximation of the 
time dependence of the laser pulse. 

This research was partly supported by N.A.S.A. under Grant NGL-33-010-042, 
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